

Impact of GCHP Spatial Resolution on Global Geophysical Satellite-Derived Fine Particulate Matter

Dandan Zhang

with contributions from

Randall V. Martin, Aaron van Donkelaar, Chi Li, Haihui Zhu, and Alexei Lyapustin

Jun 12, 2024

Global distributions of satellite-derived PM_{2.5} across resolution

PW: population weighted

 Global similarity across resolution (R² = 0.96)
 Local heterogeneity: isolated sources and mountainous regions

ACAG

ACAG Opposite resolution sensitivities of primary and secondary components

- Better resolved spatial representation of primary aerosols;
- Reduced surface to column ratio of secondary aerosols

Speciated surface to column ratio:

$$\eta_i = \frac{C_{sfc,i}}{\text{AOD}_i}$$

where *i* for different species.

- Primary aerosol:PA = POA + BC + Dust + SS
- Secondary aerosol: SA = SOA + SO₄²⁻ + NO₃⁻ + NH₄⁺

PW: population weighted

ACAGE Opposite resolution sensitivities of primary and secondary components

Surface driven spatial heterogeneity of η

- SO₄²⁻: reduced local oxidation of SO₂ over strong source regions
- POA: covariation of surface and total column abundance -> reduced heterogeneity

		PM _{2.5}	SO4 ²⁻	POA
η_i C_{sfc}	PW-NRMSD (%)	17.9	32.2	28.8
	PW-NMD (%)	-1.3	-13.7	7.5
	PW-NRMSD (%)	23.1	41.8	42.0
	PW-NMD (%)	0.7	-18.6	9.5
AOD	PW-NRMSD (%)	19.1	29.4	30.3
	PW-NMD (%)	2.8	-2.9	3.3
Note: $\eta_i = \frac{C_{sfc,i}}{AOD_i}$, where <i>i</i> for different species.				

ACAG Spatial representation: better resolved mountain-valley contrast

- Distinct mountain-valley contrast better resolved at fine resolution
- Compositional separation of vertical profiles
 - Valley: Dominant near-surface nitrate
 - Mountain: Nitrate transported aloft
- Enhanced agreement against observations

- Pronounced global similarity of geophysical satellite-derived PM_{2.5}
 (R² = 0.96, slope = 1.03) across model resolution
- Opposite resolution sensitivities between primary and secondary components
 - Primary hotspots: Covariations between surface PM_{2.5} and AOD
 - Secondary reductions: reduced surface concentrations
- Regional vertical heterogeneity
 - Vertical concentration stratification: local near-surface pollution vs. regional transport aloft
 - Compositional mountain-valley contrast

